

Solfuri

Function: Differential Pulse Voltammetry (DPV/a)

Start Potential	(mV)	-200
End Potential	(mV)	-1000
Current range		4,096
Scan Speed	(mV/s)	20
Number of cycles	S	3
Delay before swe	ep (s)	5
Purge and stir tir	ne (s)	300
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Sulphide concentrated standard solution (1 g/l)

Dissolve 7.4901 g of $Na_2S \cdot 9H_2O$ in 11 of 0.1 M NaOH, in a volumetric flask. Prepare the solution at the moment of the analysis. ($MM_{Na2S} = 240.2 \ MM_S = 32$)

Supporting electrolyte 1 M NaOH solution

Dissolve 40 g of NaOH in 1 l of distilled water.

Procedure

Pour 10 ml of sample in the cell. Add 1 ml of supporting electrolyte.

Working standard solution (10 mg/l)

Dilute 1+99 the concentrated standard solution with distilled water. Prepare the solution at the moment of the analysis

Warnings

- Store samples in hermetically sealed bottles without bubble air inside. Analyse these samples as soon as possible
- For a better treatment, add 4 g of NaOH for 1 l to the sample, at the moment of sampling and analyse the solution as soon as possible.

Analytical report

Analysis: Anaerobic water plant Sample Concentration = $14.9 \mu g/l$

Method: 5 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 1 (ml)
Sample Volume 10 (ml)
Standard Conc. 10000 (µg/l)

Height Table

#	Peak Pot.	Height
0	-637.5	1.316 μΑ
1	-657.5	8.259 μΑ
2	-663.8	15.50 μΑ
3	-671.8	22.55 μΑ
4	-676.3	29.37 μΑ
5	-681.2	36.57 uA

Regression Data

Add.Conc.	Height x dilution	
$0 \mu g/l$	1.448 μΑ	
100 "	9.168 μΑ	
200 "	17.37 μΑ	
300 "	25.49	
$r^2 = .9998$		
400 "	33.49 μΑ	
500 "	42.06 μΑ	
	0 μg/l 100 " 200 " 300 " r ² =	

$a = 81.19 \text{ nA*I/}\mu g$ $b = 1.207 \mu A$ $C_x = 14.9 \mu g/I$ $r^2 = .9998$

AMEL 433

$$y = ax + b$$

 $a = 81.19 \text{ nA*l/}\mu\text{g}$
 $b = 1.207 \mu\text{A}$

