

Zinc - traces (conc. < 1 mg/l)

Function: Differential Pulse Stripping Voltammetry (DPS/a)

Start Potential (mV)	-1200
End Potential (mV)	-800
Current range	102,4
Scan Speed (mV/s)	20
Deposition time (s)	30
Deposition Pot. (mV)	-1200
Number of cycles	3
Delay before sweep (s)	5
Purge and stir time (s)	100
Stirring speed (rpm)	300
Drop Size (a.u.)	30

Zinc concentrated standard solution (1 g/l)

Dissolve 1 g of Zink in a minimum volume of 6 M HCl. Bring to volume in a 1 l volumetric flask with 1% HCl.

Supporting Electrolyte

0.1 M Acetate buffer, pH 4.5

Dissolve 8.2 g of anhidrous CH₃COONa (or 13.6 g of CH₃COONa·3H₂O) in 800 ml of distilled water. Add 5.75 ml of glacial CH₃COOH. Check and adjust the pH. Bring to volume with distilled water, in a 1 l volumetric flask

Procedure

Add 1-2 ml of sample to 10 ml of Supporting Electrolyte.

Alternatively, add 26% NH₃ to the sample until pH from 3 to 7.

Analyse sea water, high salt content sample and acidic solution (at pH between 1 and 3) avoiding the addition of the supporting electrolyte.

Samples at pH above 7 are to be neutralised before the addition of the supporting electrolyte.

Working standard solution (10 mg/l)

Dilute 1+99 the concentrated standard solution with distilled water, in a volumetric flask.

Warnings

If the pH of the sample is 3-7, avoid the addition of supporting electrolyte; but if the content of salts of the sample is low, the addition of supporting electrolyte is mandatory. Final solution (supporting electrolyte + sample + solvent) has to have a concentration of zinc below 1 mg/l.

Analytical report

Analysis: tap water

Sample Concentration = 3.79 mg/l

Method: 5 additions

Blank: Direct subtraction (conc.: 0.052 mg/l)

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 10 (ml)
Sample Volume 2 (ml)
Standard Conc. 10 (mg/l)

Height Table

#	Peak Pot.	Height
0	-996.8	34.69 μΑ
1	-991.4	47.05 μΑ
2	-999.8	57.05 μΑ
3	-992.9	68.85 μΑ
4	-998.3	77.71 μΑ
5	-999 8	88 70 uA

Regression Data

#	Add.Conc.	Height x dilution
0	0 mg/l	208.2 μΑ
1	1.50 "	289.4 μΑ
2	3.00 "	359.5 μΑ
3	4.50 "	444.1 μΑ
4	6.00 "	512.9 μΑ
5	7.50 "	598.8 uA

a = 51.59
$$\mu$$
A*I/mg b = 208.7 μ A
C_x= 4.05 mg/l r² = .9992

AMEL 433

$$y = ax + b$$

 $a = 51.59 \mu A*l/mg$

 $b = 208.7 \mu A$

 $r^2 = .9992$

